Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation

نویسندگان

  • Thomas Duyckaerts
  • Carlos Kenig
  • Frank Merle
  • THOMAS DUYCKAERTS
  • CARLOS KENIG
  • FRANK MERLE
چکیده

Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit universal properties of such solutions. Let W be the unique radial positive stationary solution of the equation. Our main result is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial solution is essentially the sum of a rescaled W concentrating at the origin and a small remainder which is continuous with respect to the time variable in the energy space. This is coherent with the solutions constructed by Krieger, Schlag and Tataru. One ingredient of our proof is that the unique radial solution which is compact up to scaling is equal to W up to symmetries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Smooth type II blow up solutions to the four dimensional energy critical wave equation

We exhibit C∞ type II blow up solutions to the focusing energy critical wave equation in dimension N = 4. These solutions admit near blow up time a decomposiiton u(t, x) = 1 λ N−2 2 (t) (Q+ ε(t))( x λ(t) ) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1 where Q is the extremizing profile of the Sobolev embedding Ḣ → L∗ , and a blow up speed λ(t) = (T − t)e− √ |log(T−t)|(1+o(1)) as t → T.

متن کامل

On Type I Blow up Formation for the Critical Nlw

We introduce a suitable concept of weak evolution in the context of the radial quintic focussing semilinear wave equation on R3`1, that is adapted to continuation past type II singularities. We show that the weak extension leads to type I singularity formation for initial data corresponding to: (i) the Kenig-Merle blow-up solutions with initial energy below the ground state and (ii) the Krieger...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation

The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009