Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation
نویسندگان
چکیده
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit universal properties of such solutions. Let W be the unique radial positive stationary solution of the equation. Our main result is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial solution is essentially the sum of a rescaled W concentrating at the origin and a small remainder which is continuous with respect to the time variable in the energy space. This is coherent with the solutions constructed by Krieger, Schlag and Tataru. One ingredient of our proof is that the unique radial solution which is compact up to scaling is equal to W up to symmetries.
منابع مشابه
Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملSmooth type II blow up solutions to the four dimensional energy critical wave equation
We exhibit C∞ type II blow up solutions to the focusing energy critical wave equation in dimension N = 4. These solutions admit near blow up time a decomposiiton u(t, x) = 1 λ N−2 2 (t) (Q+ ε(t))( x λ(t) ) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1 where Q is the extremizing profile of the Sobolev embedding Ḣ → L∗ , and a blow up speed λ(t) = (T − t)e− √ |log(T−t)|(1+o(1)) as t → T.
متن کاملOn Type I Blow up Formation for the Critical Nlw
We introduce a suitable concept of weak evolution in the context of the radial quintic focussing semilinear wave equation on R3`1, that is adapted to continuation past type II singularities. We show that the weak extension leads to type I singularity formation for initial data corresponding to: (i) the Kenig-Merle blow-up solutions with initial energy below the ground state and (ii) the Krieger...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملStability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation
The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the...
متن کامل